Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
An optimization framework to provide volunteers with task selection autonomy and group opportunitiesNonprofit Organizations (NPOs) rely on volunteers to support community needs but struggle with making strategic volunteer-to-task assignments to enable volunteer satisfaction, and completion of complex tasks. Creation of volunteer groups and their assignment to NPO tasks can help achieve these goals by providing volunteers with opportunity for networking, collaboration, and peer learning. However, strategically creating ideal assignments is challenging because (i) there are exponentially many ways a set of volunteers can be assigned in groups; and (ii) NPOs tend to have limited and uncertain data concerning volunteers’ personal preferences, availabilities, and motivations to participate. To address these challenges, this research contributes by introducing an integer programming framework to offer volunteers a menu of tasks to choose from and then based on volunteers’ willingness information, creates ideal homogenous volunteer group assignments. These groups are created such that the group collectively meet a task’s skill requirements and groups of volunteers of similar skill and affinity levels are prioritized. We apply the developed methodology to a case study based on a partner NPO that works with remote volunteers from multiple countries to produce online educational content. The menu creation method can improve NPO and volunteer-based performance metrics, where the most improvement is observed when a NPO is faced with very picky volunteers. Presenting volunteers with larger menus of tasks also leads to an improvement in ideal group creations. Implementing the group creation methodology helps obtain a statistically significant increase in ideal group creations but results in a tradeoff of decreased benefits to volunteers and the NPO. Finally, implementing a minimum desired group size does not severely impact most KPIs and would be beneficial for an NPO to implement as it encourages the creation and assignment of volunteer groups to tasks.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Crowdsourced transportation by independent suppliers (or drivers) is central to urban delivery and mobility platforms. While utilizing crowdsourced resources has several advantages, it comes with the challenge that suppliers are not bound to assignments made by the platforms. In practice, suppliers often decline offered service requests, e.g., due to the required travel detour, the expected tip, or the area a request is located. This leads to inconveniences for the platform (ineffective assignments), the corresponding customer (delayed service), and also the suppliers themselves (non-fitting assignment, less revenue). Therefore, the objective of this work is to analyze the impact of a platform approximating and incorporating individual suppliers’ acceptance behavior into the order dispatching process and to quantify its impact on all stakeholders (platform, customers, suppliers). To this end, we propose a dynamic matching problem where suppliers’ acceptances or rejections of offers are uncertain. Suppliers who accept an offered request are assigned and reenter the system after service looking for another offer. Suppliers declining an offer stay idle to wait for another offer, but leave after a limited time if no acceptable offer is made. Every supplier decision reveals only their acceptance or rejection information to the platform, and in this paper, we present a corresponding mathematical model and an approximation method that translates supplier responses into updated approximations of the likelihood of a specific supplier to accept a specific future offer and use this information to optimize subsequent offering decisions. We show via a computational study based on crowdsourced food delivery that online approximation and incorporating individual supplier acceptance estimates into order dispatching leads to overall more successful assignments, more revenue for the platform and most of the suppliers, and less waiting for the customers to be served. We also show that considering individual supplier behavior can lead to unfair treatment of more agreeable suppliers.more » « less
-
A recent business model, on-demand warehousing, enables warehouse owners with extra distribution capacity to rent it out for short periods, providing firms needing flexible network designs a new type of distribution capacity. In this paper, a heuristic is created to solve large scale instances of dynamic facility location models that optimize distribution networks over a multi-period planning horizon, simultaneously considering the selection of different warehouse types with varying capacity granularity, commitment granularity, access to scale, and cost structures. The heuristic iteratively solves selected single-period problems, creating a set of smaller subproblems that are then solved for multiple periods. Their decisions are combined to achieve feasible low-cost solutions, ensuring each customer’s demand point is covered for each period. A set of computational experiments recommends how heuristic settings should be set by industrial decision makers and illustrates the heuristic can generate high-quality solutions for large scale networks during long planning horizons and many decision periods. The heuristic can solve national-level instances with many customer demand points, candidate locations, different warehouse types and capacity levels and many periods.more » « less
-
Peer-to-peer transportation platforms dynamically match requests (e.g., a ride, a delivery) to independent suppliers who are not employed nor controlled by the platform. Thus, the platform cannot be certain that a supplier will accept an offered request. To mitigate this selection uncertainty, a platform can offer each supplier a menu of requests to choose from. Such menus need to be created carefully because there is a trade-off between selection probability and duplicate selections. In addition to a complex decision space, supplier selection decisions are vast and have systematic implications, impacting the platform’s revenue, other suppliers’ experiences (in the form of duplicate selections), and the request waiting times. Thus, we present a multiple scenario approach, repeatedly sampling potential supplier selections, solving the corresponding two-stage decision problems, and combining the multiple different solutions through a consensus algorithm. Extensive computational results using the Chicago Region as a case study illustrate that our method outperforms a set of benchmark policies. We quantify the value of anticipating supplier selection, offering menus to suppliers, offering requests to multiple suppliers at once, and holistically generating menus with the entire system in mind. Our method leads to more balanced assignments by sacrificing some “easy wins” toward better system performance over time and for all stakeholders involved, including increased revenue for the platform, and decreased match waiting times for suppliers and requests.more » « less
-
To close the gap between current distribution operations and today’s customer expectations, firms need to think differently about how resources are acquired, managed and allocated to fulfill customer requests. Rather than optimize planned resource capacity acquired through ownership or long- term partnerships, this work focuses on a specific supply-side innovation – on-demand distribution platforms. On-demand distribution systems move, store, and fulfill goods by matching autonomous suppliers' resources (warehouse space, fulfillment capacity, truck space, delivery services) to requests on-demand. On-demand warehousing systems can provide resource elasticity by allowing capacity decisions to be made at a finer granularity (at the pallet-level) and commitment (monthly versus yearly), than construct or lease options. However, such systems are inherently more complex than traditional systems, as well as have varying costs and operational structures (e.g., higher variable costs, but little or no fixed costs). New decision- supporting models are needed to capture these trade-offs.more » « less
An official website of the United States government

Full Text Available